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Introduction 

Music is embodied. Musicians bob, weave, and gyrate as they play; listeners move to the 

sounds of music. One way to understand this intimate relationship is as the product of a 

dynamical system (Demos, Chaffin, & Kant, 2014). The dynamical systems approach provides a 

framework for explaining how very different kinds of components can interact to create an 

integrated complex system. In the case of music, the components include minimally: thought 

(e.g., music cognition and perception), action (e.g., music production), and social interaction 

(e.g., music communication) (Hargreaves, MacDonald, Miell, & Miell, 2005; Sawyer, 2005). 

Each of these component systems has already been the subject of detailed dynamical systems 

analysis by psychologists (de Bruin & Kästner, 2012; Kelso, 1997; Latash, 2008; Marsh, 2010; 

Van Gelder, 1998; Warren, 2006). We build on their work in applying dynamical systems to the 

relationship of music and movement.  

 The behavior of complex systems often exhibits recurrence, i.e., self-similarity across 

different time scales (Marwan, 2008; Marwan, Carmenromano, Thiel, & Kurths, 2007). 

Recurrence has been successfully used in psychology to examine inter-speaker coordination of 

postural sway (Shockley, Richardson, & Dale, 2009), eye movements (Richardson & Dale, 

2005), and word order (Dale & Spivey, 2006). For music performance, recurrence has been used 

to examine timing (Rankin, Large, & Fink, 2009) and postural sway (Demos, 2013; Demos et al., 

2014; Demos, Frank, & Chaffin, 2011). In this chapter, we describe how to measure recurrence 

in the movements of performers, but the same methods can be applied to the movements of 

listeners (Demos, 2013). 

Dynamical systems approaches treat interactions between components as time-evolving 

processes constrained by the context – physical, social, and mental. The focus is on change over 

time, requiring measures and statistical methods that are very different from those traditionally 

used in psychology. We describe four problems that have impeded the application of the new 

methods to music, proposing solutions for each. For examples, we draw on a recent study in 

which we recorded two trombonists as they each played two solo pieces, standards of the 

trombone literature, written by Marco Bordogni (1789-1856) and transcribed by Joannes Rochut 

(Rochut, 1928), similar in length and difficulty but differing in musical structure (see Demos, 

2013 for details). The trombonists prepared the pieces before coming to the lab, where they 



3 
 

played each piece twice in each of three different expressive styles (normal, expressive, non-

expressive). We used a force-plate to record their postural sway.  

 

Music performance as a dynamical system  

The behavior of dynamical systems is often chaotic, producing resultants that are non-

linear, i.e., not sums of their parts (Strogatz, 2014). Complex systems can self-organize, falling 

into stable patterns of behavior as a result of the interaction between components of the system, 

initial conditions, and context. Sudden changes, known as bifurcations, occur when the system 

moves from one stable state to another. Bifurcations often seem unpredictable because they can 

be triggered by small changes in some distant part of the system that seem both trivial and 

unrelated.  

Music performance exhibits many of these characteristics, combining predictability with 

sudden change. For example, music relies on repetition to induce expectations in listeners and 

then disrupts them for emotional effect (Huron, 2006). Moving to music, with different body 

parts moving at different multiples of the musical pulse (Toiviainen, Luck, & Thompson, 2009), 

can be understood as an example of spontaneous self-organization (Large, 2000). The swoops 

and swirls that musicians make as they play can be understood as perturbations of these stable 

patterns. The fact that movements seem different from one playing to the next reflects the 

sensitivity of complex systems to initial conditions and context. For example, simply moving a 

foot or altering the height of the chair can entirely change the sway needed to maintain 

equilibrium (Balasubramaniam, Riley, & Turvey, 2000).  

 

Music and methods 

 

Many of the movements that musicians make as they play are not strictly necessary in 

order to produce the musical sounds. Instead, their movements seem to reflect their expressive 

intentions and the music they are playing. Musicians move more when they play more 

expressively (Davidson, 1994) and larger movements are seen by viewers more expressive and 

more intense (Davidson, 1993; Nusseck & Wanderley, 2009). Movements reflect properties of 

the music, synchronizing with rhythmic patterns (Jensenius, Wanderley, Godøy, & Leman, 2009; 

Wanderley, Vines, Middleton, McKay, & Hatch, 2005) and clustering at musical boundaries and 
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cadences (Davidson, 2007). Compelling examples of movements that seem musically expressive 

are easy to find (Leman & Godøy, 2010). Unfortunately, it has been more difficult to 

demonstrate that the apparent relationships are real rather than due to chance.  

A science of music performance requires there to be commonalities across performances. 

So far, these have been in short supply for performers’ movements. Similarity of movement is 

higher within than between musicians for performances of the same piece (Teixeira, Yehia, & 

Lourerio, 2015; Teixeira, Loureiro, Wanderley, & Yehia, 2015). However, even within musician 

correlations are small. For example, in our study of trombonists, the mean within musician 

correlation was R2 = .12 across repeated performances (see Demos, 2013). One reason may be 

that movement reflects musical structure, which may not remain as constant across performances 

as generally assumed (MacRitchie, Buck, & Bailey, 2013; Palmer, Koopmans, Loehr, & Carter, 

2009). In our study, we asked the trombonists to mark their phrasing in the score immediately 

after each performance, allowing for the possibility that phrasing might vary with the expressive 

style of the performance (Shaffer & Todd, 1987). 

A second problem is how to measure the complexly patterned movements of musicians 

as they play. Each performer seems to use a limited vocabulary of movement gestures, bobbing, 

weaving, and gyrating in characteristic ways (Davidson, 2007, 2012; Wanderley et al., 2005). 

While, the overall degree of movement can be captured by the root mean square, a relative of the 

standard deviation, standard descriptive statistics do not capture the quality of movement that 

seems most relevant to the musical expression, self-similarity. The discovery that self-similarity 

across different time scales is a hallmark of complex systems was an important step in the 

development of complex systems theory. Mandelbrot (1967, 1983) showed that the seemingly 

random structure of the English coastline can be described by fractal mathematics because the 

shape of each small region is similar to the larger region in which it is embedded. Our senses 

respond to self-similarity. Self-similarity is part of what we respond to when we enjoy the 

swaying of tree branches, the sparkle of sunlight on water, or the coordinated movements of a 

drill team or corps de ballet (Van Orden, Holden, & Turvey, 2003). Self-similarity is responsible 

for the patterns that we perceive in musicians’ movements.  

 

Detecting self-similarity in movements 
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A popular method for examining self-similarity in a complex system is recurrence 

quantification analysis (RQA; Marwan, 2008). Conducting RQA on musical movement requires 

a two-step process. First, the system is represented in phase-space, a mathematical space that 

contains all possible states of the system. Normally this is impossible to measure, however 

Takens’ (1981) embedding theorem allows one-dimensional data to be transformed into a phase-

space representation of the original system (Abarbanel, 1996). For example, postural sway 

contains information about the movement of arms, head, and torso because each part connects to 

the others, and so the projection of sway into phase-space reflects the movement of the entire 

body.  

 Once the system is represented in phase-space, points of self-similarity, i.e., recurrence, 

can be identified using RQA. Applied to movement, higher proportions of recurrence indicate 

more repetitive movements, as when playing an oomp-pah-pah accompaniment or playing 

mechanically and non-expressively. Lower values indicate less repetitive movements of the sort 

that occur when playing expressively. Figure 1 provides an example, showing three plots of the 

side-to-side (medio-lateral) sway of one of the trombonist’s during an expressive performance. 

All three panels in Figure 1 show time as elapsed bars from the start of the performance. Panel A 

shows the raw data for position. Panel B shows the conversion of position data into a recurrence 

quantification plot with each dot representing a point of recurrence where movement at one point 

in time overlapped with movement at another point in time (in phase-space). The main diagonal 

represents a time-lag of zero and so the solid line along the diagonal is the tautological 

consequence of movements overlapping perfectly with themselves at lag-0. Bumps along the 

major diagonal represent recurrence of movements (in phase-space) on a short time-scale. Off-

diagonal lines reflect the recurrence of movements at longer time lags that increase with distance 

from the diagonal. The figure is symmetrical, so the lines above and below the diagonal are 

redundant (Marwan et al., 2007). Solid, dark, straight lines indicate the major sections of the 

music (A, B, B-Coda, A, Coda) and light, dashed, straight lines the phrase boundaries within 

each section (Demos, 2013). Panel C is described in the next section.  

 

<FIGURE 1 HERE> 
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The most important feature of Panel B is that it is not random. If the data were random, 

dots representing recurrence would be evenly distributed over the plot. The clustering of dots 

into lines tells us that recurrence (similarity of movement) was not random but was 

systematically distributed in time. Lines parallel to the diagonal reflect sequences of recurrent 

movement at consecutive locations in the music. Breaks in the diagonal lines represent periods of 

non-recurrence during which these recurrent sequences were interrupted. Panel B shows a rich 

tapestry of recurrence that appears to vary with the musical structure. 

Within Section A (Bars 1-24) there is a series of diagonal lines reflecting the question 

and answer structure of the music: cyclical repetition of musical motifs is reflected in the cyclical 

repetition of movement. In the final phrase of this section (Bars 21-25) and most of section B 

(Bars 25-32), the diagonals break up and disappear, indicating that the pattern of sway was not 

repeated elsewhere in the performance. In the following section (Bars 37-44), musical material 

from section A returns, accompanied once again by diagonal lines representing recurrence.  

These correspondences between recurrence and musical material are descriptive, based 

on visual inspection. Showing that the correspondences are real, and not due to chance, requires 

use of inferential statistics applied to all 24 complete performances. We will describe two 

inferential approaches; many others are possible. The first reduces the RQA plot to a one-

dimensional time-series (as in Panel C) and uses mixed effect models to do the statistical 

analysis. The second keeps the data plotted in matrix form and directly compares plots using 

additional RQA techniques (CRQA and JRQA).   

 

Time series analysis of RQA  

Generating a meaningful time-series for analysis  

 

Each RQA plot can be converted to a one-dimensional time-series representing 

recurrence at each point in time, as in Panel C of Figure 1. Just as normal distributions can be 

summarized by a variety of metrics (e.g., mean and standard deviation), so with recurrence. For 

recurrence, there are at least nine metrics, of which we will describe three (Marwan, 2008; 

Shockley & Riley, 2015). The rate of recurrence measures the density of recurrent data points 

(recurrence) as a proportion of recurrent to non-recurrent data points (0 -100%). For movement, 

recurrence indicates repetitiveness. Stability of recurrence is measured by the mean length of the 
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off-diagonal lines (mean line), and indicates how long sequences of recurrent movements persist. 

Predictability is measured by the ratio of recurrent points that fall into lines to the total number 

of recurrent points (determinism) and indicates how well movements can be predicted.  

RQA metrics can be calculated for different sized slices of time. The window size 

selected depends on the question of interest. Larger window sizes provide smoother time-series, 

but decreased resolution. For music, time is best calibrated musically, in terms of beats or 

measures, rather than objectively in terms of clock time. This facilitates the alignment of 

movements with the musical score, albeit at the cost of allowing the number of samples to differ 

across beats or measures. Figure 1, Panel C shows the rate of recurrence and stability using the 

beat (plotted in bars) as the metric of time. Since stability is based on the mean line of the 

recurrence rate, we partial out recurrence rate to make sure that the fluctuations that we see in 

stability are not influenced by the rate of recurrence; otherwise the two measures are strongly 

correlated, making interpretation difficult. This way, stability can be interpreted independently of 

the patterns for the recurrence rate.  

Panel C clarifies the impressions gained from our visual inspection of Panel B. In Panel C 

we see somewhat cyclical patterns for both recurrence and stability that seem to reflect the 

phrasal structure of the music. Recurrence appears higher in mid-phrase and lower at starts and 

ends of phrases. As described earlier for Panel B, the onset of the new musical sections (e.g., in 

Bars 37-45) seems to change the pattern of recurrence. For example, recurrence reaches its 

highest rate in Bars 41-45, at which point stability is at a low level. Again, we are describing 

visual impressions based on inspection of a single performance. Firmer conclusions require the 

use of statistical techniques.   

 

Statistics of a recurrence time series  

 

A third source of difficulty in music research has been the inability of traditional 

inferential statistics to accurately evaluate the reliability of effects in multiple-level temporal 

hierarchies such as those typically present in musical performance. Traditional statistical tests 

based on General Linear Models, such as ANOVA and multiple regression, require that 

observations be independent and variance homogeneous (constant across conditions). For most 

music and most performances, these conditions are not met. Observations within a piece are not 
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independent because each beat is related to the next, each bar and phrase is related to those that 

follow, and so on up the temporal hierarchy. Nor can we assume that observations are 

independent across repeated performances of the same piece by the same musician, since it is 

likely that each performance affects those that follow. The requirement that variance be constant 

across conditions is also not met for most music. Since pieces, sections and phrases typically 

vary in length, segments at each level are likely to provide different numbers of observations, 

with consequent differences in variability. For these reasons, traditional statistical tests may not 

accurately assess the reliability of effects in studies of music performance. 

Similar problems occur in any study involving time-series data, including that staple of 

cognitive psychology, the repeated-measures design. In repeated-measures designs, observations 

are not independent because they are made sequentially on the same individual, and so 

performance on one trial may affect performance on the next. The normal solution is to 

counterbalance stimuli with order of presentation across participants, eliminating order effects 

with respect to comparisons of experimental interest. This strategy is not available when 

studying music, which must be played in the order written. Random ordering destroys musical 

structure, eliminating the musical properties of interest when relating musicians’ movements to 

the music they are playing.  

Fortunately, mixed effects models now provide a generalized form of multiple regression 

analysis suitable for short-time-series and longitudinal data with unbalanced numbers of 

observations in hierarchical nested/crossed designs (Pinheiro & Bates, 2000; Singer & Willett, 

2003). Mixed models make it possible to examine serial position effects in composed music 

containing phrases of varying lengths. Mixed models can also simultaneously test for effects at 

multiple levels of a musical hierarchy (beats within bars, within phrases, within sections, within 

pieces) and model the interleaving of temporally nested and crossed factors of the sort that 

occurs when a musician gives multiple performances of the same piece. This allows us to 

accurately partition variance in the data to its different sources, such as differences between 

musicians, musical pieces, and levels of musical structure, allowing us to pinpoint effects of 

interest. Mixed models allow the researcher to treat each independent variable as fixed, random 

or both, making it possible to increase sensitivity by statistically holding constant variables that 

obscure effects of interest (e.g., amount of practice, pitch height, inter-note/beat interval). Mixed 

models also allow testing of “growth curve” serial position effects, such as bow-shaped changes 
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of dynamic level across the length of a phrase (Mirman, 2014). Mixed models also make it 

possible to examine such effects while controlling both time-variant predictors, such as practice, 

and time-invariant predictors, such as serial-position in a phrase.  

We used mixed models with linear, quadratic (U-shaped), and cubic (S-shaped) polynomial 

functions to examine the effects of musical structure, i.e., phrasing, and expressive style across the 

24 performances recorded by our two trombonists (Demos, Chaffin, & Logan, under review). Each 

of the 24 performances was treated in the way shown in Figure 1 (position  recurrence plot  

metrics for rate of recurrence and stability). Phrase boundaries were taken directly from the 

performers’ reports of their phrasing, made immediately after each performance. Recurrence 

changed systematically across phrases, producing S-shaped functions when plotted against serial 

position in a phrase (as in Figure 1, Panel C). Rate of recurrence was lowest at the beginning of a 

phrase, increasing sharply to a peak shortly before the middle, and then tailing off gradually to the 

end of the phrase. The S-shapes of these phrasing profiles were more pronounced in normal and 

expressive than in non-expressive performances, and more pronounced for longer than for shorter 

phrases. The phrasing functions identify statistically reliable relationships between the musicians’ 

movements and the music they played. It was important that the musicians reported their phrasing 

after each performance because phrasing differed with the musician, the expressive style of the 

performance, and, in one case, from one performance to another by the same performer in the same 

style.  

 

Direct analysis of RQA plot 

RQA of more than one performance 

 

When RQA is extended from one performance to two (or more), it comes in two flavors: 

cross (CRQA) and joint (JRQA). Both are available in the Matlab CRP Toolbox (Marwan & 

Kurths, 2002). Each answers a different question. CRQA, like cross-correlation, asks, “did the 

same pattern repeat across the two performances, regardless of location in the piece”. JRQA is 

more like overlaying two auto-correlations; it, asks, “Did some patterns repeat at the same places 

in both performances?”. JRQA is tied to the score, while in CRQA is not. 

CRQA can be considered a generalized form of cross-correlation (Marwan et al., 2007). 

When two (and only two) time-series (of any type) are examined in phase-space, we look for 
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locations where the two signals come to the same state. These locations are where the two 

systems are in alignment with each other. As with RQA, these locations can be considered at all 

possible time lags or only at lag-0 (Marwan et al., 2007). In CRQA, the movements must cross in 

shared phase space. This means that you are looking for repeats of the same movement pattern in 

both performances. JRQA asks a different question. JRQA takes two (or more) RQA plots and 

overlays them and asks when recurrence occurs at exactly the same time. The recurrent points 

that overlay each other may reflect different movements, but they show that the performer did 

something recurrent at the same point in each performance. JRQA results in a new plot that 

shows where the two (or more) RQA plots have identical recurrent patterns. JRQA helps solve 

the initial conditions problem of complex systems by identifying similarities between 

performances in recurrence rather than similarities in the movements themselves.  

CRQA and JRQA require that the performances compared be on the same time scale, 

which requires converting clock time to musical time, by time warping the performances. There 

are many methods of time warping, including functional data analysis (FDA) (Ramsay, 2006), 

and more classically derived methods, such as linear resampling to standardize each musical note 

length across performances (see Demos, 2013). FDA is a good candidate when paired with 

CRQA. When using JRQA, classical methods will be more precise and more assumption free as 

individual notes can be aligned. Once the data are time-warped and undergo C/JRQA there are 

two options. A time-series can be extracted and analyzed with mixed models, as described 

above. Alternatively, the level of correspondence between two performances provided by the 

C/JRQA plots can be directly assessed for statistical significance.   

 

Assessing significance 

 

A final difficulty that has impeded the scientific study of music performance is that there 

is no obvious way of determining what to expect by chance. For example, if performers’ 

movements are related to the music, they should overlap across performances. How do we 

determine whether overlap is greater than chance? In traditional experiments, control groups 

generally provide a baseline for making such assessments. For music performance, chance levels 

must be determined by bootstrapping (Efron & Tibshirani, 1994). The data is shuffled a 

predetermined number of times (typically 500 or more) to create surrogate data sets, and the 
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statistic of interest is computed for each shuffle to build a distribution for the statistic. Then, we 

test the observed value of the statistic against the distribution using the percentile method. If the 

observed value falls outside the confidence intervals provided by the surrogates, then it is 

significant.  

  Simple, random shuffling the data is not, however, sufficient because it destroys the 

autoregressive structure of the original data. Significant effects show only that the observed 

value was not generated by a stochastic (white noise) process – often a trivial conclusion. Of 

course, human movement and musical sound are not white noise. They are highly autoregressive, 

with each data point strongly related to its predecessor. When plotted over time, the data take the 

form of wave-like undulations. Randomly chosen pairs of undulating time series of this sort 

often exhibit substantial correlation. Such correlations are merely products of chance, providing 

no evidence that the two sequences are related. To provide evidence of a relationship, the 

correlation must be greater than the chance levels that occur when comparing two unrelated time 

series.   

Phase-shuffling is an alternative shuffling method, more appropriate for time-series data, 

because it retains the autoregressive properties of the original data. The time-series is converted 

into its Fourier components, the phase is shuffled, and the time-series reassembled (Thiel, 

Eubank, Longtin, Galdrikian, & Farmer, 1992). Iterative Amplitude Adapted Fourier Transform 

(IAAFT) is a method of phase shuffling that preserves both the autoregressive structure and the 

frequency distribution of the original time series (Schreiber & Schmitz, 2000). When the 

observed value of a statistic differs from its value for IAAFT surrogates, we can conclude that 

two time-series have more in common than just their autoregressive parameters.  

IAAFT surrogates provide similar output to bootstrapping, i.e., confidence intervals (CI). 

Each surrogate is processed as if it were the original time-series, first undergoing PSR and 

C/JRQA. When two time-series are compared, surrogates are computed for one and compared to 

the other (real) time-series. This process is repeated, say 500 times, and a distribution of each of 

the metrics of C/JRQA is created. This distribution can be treated statistically as a source of CIs 

for one-tailed or two-tailed tests in the same way as for traditional statistical metrics.  

Here, we provide an example where we took two performances of the same piece by the 

same performer and asked whether or not their movement patterns were more similar (cross-

recurrence) than expected by chance, as determined by IAAFT surrogates. The CRQA analysis 
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showed a cross-recurrence rate between the two performances of .092 and the IAAFT surrogates 

yielded a 95% CI [lower bound = .081, upper bound = .095]. The actual recurrence rate falls 

within the CI, so we conclude that the movement patterns in the two performances did not 

overlap more than expected by chance. In other words, the movement of the performer was not 

significantly different from one performance to the next. As always, we should be cautious 

interpreting null results.  

JRQA provides a different test, asking whether recurrence occurred at the same point in 

the musical score in each of the two performances.  The JRQA analysis showed a joint-

recurrence rate of .025 and the IAAFT surrogates yielded a 95% CI [lower bound = .010, upper 

bound = .016]. Since the obtained value was outside the CI, we can conclude the joint-recurrence 

value was higher than chance. Since JRQA asks, “Did some patterns repeat at the same places in 

both performances?”, we conclude that they did; the performer moved in the same ways at the 

same places in the music more than expected by chance. Again, this is expected for two 

performances of the same piece, in the same style, by the same musician.  

Conclusion 

The intuition that music and movement are closely related is widely shared by performers 

and audiences alike. However, providing empirical evidence for this intuition has proved 

difficult. Two decades of research into the relationship of movement and music have provided 

many examples of movements that seem musically expressive, but has not succeeded in showing 

that the apparent relationships were due to more than chance. Progress has been limited by the 

lack of ways of measuring complex movements and statistical methods for assessing them. 

Fortunately, the development of the complex systems approach has provided music researchers 

with the tools they need. Our research with the trombonists showed that their postural sway was 

systematically related to their musical phrasing. The existence of such a relationship between 

phrasing and movement was obvious, but now we can demonstrate it rigorously. Finally, we can 

begin to ask interesting questions about the embodiment of thought and feeling in music 

performance.    
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