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Abstract
Musicians’ sway during performance seems to be related to musical structure. However, it has yet to be 
shown that examples of the relationship are not simply due to chance. Progress has been impeded by 
three problems: the assumption that musical structure is constant across performances; the complexity 
of the movements; and the inability of traditional statistical tests to accurately model the multilevel 
temporal hierarchies involved. We solved these problems in a study of the side-to-side postural sway 
of two trombonists as they each recorded two performances of each of two solo pieces in each of three 
different performance styles (normal, expressive, non-expressive). The musicians reported their phrasing 
immediately after each performance by marking copies of the score. We measured the rate and stability 
(mean line) of recurrence (self-similarity) and assessed the effect of serial position within a phrase, using 
mixed linear models to model the nesting of phrases within pieces, within performances, across expressive 
styles and musicians. Recurrence and stability of recurrence changed systematically across the course of a 
phrase, producing sinusoidal-like and arch-shaped phrasing contours that differed with the performance 
style and length of phrase. As long suspected, musicians’ expressive movements reflect musical structure.
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Audiences and researchers alike share the intuition that the swaying of  musicians as they play 
reflects the music they are playing (Davidson, 1994, 2005, 2006, 2007, 2009, 2012; Ginsborg, 
2009; Leman & Godoy, 2010; MacRitchie, Buck, & Bailey, 2013; Nusseck & Wanderley, 2009; 
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Palmer, Koopmans, Carter, Loehr, & Wanderley, 2009). Musicians move more than strictly nec-
essary simply to produce the notes, making it useful to distinguish the sound-producing movements 
directly responsible for producing musical sound from ancillary movements less directly respon-
sible for sound production (Jensenius, Wanderley, Godøy, & Leman, 2010; Wanderley, 2002). 
One function of  ancillary movements may be to convey information about performers’ expres-
sive intentions. Viewers shown video recordings or point-light displays of  musicians’ movements 
are able to accurately identify the emotions the musicians were asked to express, and how expres-
sively they intended to play (Dahl & Friberg, 2007; Davidson & Broughton, 2016; Nusseck, & 
Wanderley, 2009). Musicians may also use ancillary movement to help guide their performance 
such as when a singer’s arm movements delineate the rise and fall of  musical tension across the 
course of  a musical phrase (Leman, 2008; Jensenius et al., 2010; Pierce, 2007, p. 1).

To study performers’ movements, researchers have adapted tools and techniques from the 
study of  language-based gestures. Movements of  interest, such as pointing and nodding, are 
identified by inspection of  a recorded communication and their meaning is determined from 
the context (McNeill, 2006). Musicians’ gestures are often aligned with rhythmic patterns 
(Wanderley, Vines, Middleton, McKay, & Hatch, 2005) and cluster at musically important loca-
tions (Davidson, 2007; Teixeira, Yehia, & Loureiro, 2015). Beyond this, the gestural approach 
has proved inadequate (Demos, Chaffin, & Kant, 2014; Leman, 2008). The relationship 
between context and gesture seems less consistent for music than for speech. Each musician 
has a different repertoire of  gestures which they use in different musical contexts, even within 
the same performance (Davidson, 2012). Davidson (2007, p. 398) concludes that “perhaps … 
it is the quality of  the movements and not the specific movements themselves” (emphasis added) 
that matters. Similarly, Nusseck and Wanderley (2009, p. 335) conclude that the experience of  
the audience “is less dependent on the players’ particular body motion behaviors than it is on 
the players’ overall relative motion characteristics”.

We took a different approach, using concepts and mathematical tools developed for describ-
ing and analyzing the behavior of  non-linear dynamical systems (Demos et al., 2014; Latash, 
2008). Rather than identifying movements of  interest and then examining their musical con-
texts, we started with a musical context and asked whether it was systematically related to 
movement. Instead of  segmenting continuous movements into discrete gestures, we avoided 
assumptions about what size or type of  movement might be meaningful, allowing data from the 
performance of  an entire piece to answer that question. Instead of  attaching sensors to particu-
lar locations on the performer or instrument, we measured overall body motion using a force 
plate. Rather than assuming that the musical structure is fixed and affected the musicians’ 
phrasing in the same way in every performance, we asked performers to report their under-
standing of  the phrasing for each performance (Cook, 2013, pp. 182–208). Instead of  using 
traditional inferential statistics, such as ANOVA or multiple regression, we used statistical pro-
cedures developed for multi-level longitudinal/short-time series data (Singer & Willett, 2003) 
combined with measures developed for describing the behavior of  non-linear dynamical sys-
tems (Abarbanel, 1995; Marwan, 2008). We explain the reason for each of  these choices below 
(also see Demos & Chaffin, in press).

Trombone performance

The first decisions to be made in studying musicians’ movements are the related choices of  
instrument, movement, and measurement device. Researchers have studied singers (Davidson, 
2001, 2006) and instrumentalists on clarinet (Caramiaux, Wanderley & Bevilacqua, 2012; 
Palmer et al., 2009; Teixeira et al., 2015; Wanderley et al., 2005), piano (Clarke & Davidson, 
1998; Davidson, 1994, 2002, 2007; MacRitchie et  al., 2013), and violin (Davidson, 1993; 
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Demos, Frank, & Chaffin, 2012). We measured the postural sway of  two trombonists as they 
each played the same two pieces, which they had prepared for performance. In the present 
study, we examine the relationship between the trombonists’ sway and the music, looking for 
effects of  musical phrasing.

One reason for our choice of  the trombone in the present study is that it provides a conveni-
ent way of  separating ancillary from sound producing movement, at least partially. For trom-
bonists, postural sway on the anterior-posterior (AP) axis is more affected by the sound 
producing movements of  the trombone slide, while sway on the medio-lateral (ML) axis is more 
ancillary. Although AP and ML sway are both part of  the same circular motion of  the body, 
they can function relatively independently or not, depending on the task (Balasubramaniam, 
Riley, & Turvey, 2000). For the trombone, the two directions of  sway are relatively independent, 
probably because of  the need to compensate for movements of  the trombone slide affects AP 
more than ML sway (Demos et al., 2014). We measured postural sway in both directions but 
report only ML sway because we were mainly interested in the relationship between musical 
phrasing and ancillary movement.

Most studies of  musicians’ movements have used motion capture, measuring the movement 
of  reflective markers or sensors placed on various parts of  the performer or instrument. Some 
researchers have focused on a single location of  particular interest, such as the clarinet bell 
(Palmer et al., 2009; Teixeira et al., 2015; Wanderley et al., 2005). Other researchers employ 
data reduction techniques (e.g., principle components analysis) to merge the movement of  
multiple sensors in three spatial dimensions into a composite, one-dimensional measure of  
overall movement (MacRitchie et al., 2013; Teixeira, Loureiro, Wanderley, & Yehia, 2014). We 
measured postural sway because it reflects all of  the postural adjustments required to maintain 
balance whenever any part of  the body moves, thus providing a physical, rather than statisti-
cal, composite measure of  overall movement (Balasubramaniam et al., 2000; Latash, Scholz, & 
Schöner, 2007; Mochizuki, Duarte, Amadio, Zatsiorsky & Latash, 2006).

Measuring movement

Another decision for researchers is what metric to extract from the raw measurements to obtain 
useful information about movement. The movements of  interest are the wide variety of  move-
ments displayed by performers from short head nods and wiggles to long sweeping movements 
of  the arms that appear to trace the contour of  the music (Davidson, 2012). All these are cap-
tured by measurements of  postural sway (Mochizuki et al., 2006). These complex movements 
are not necessarily captured by traditional time-series methods, such as auto- and instantane-
ous correlation, because the same movement may be repeated irregularly, at different locations 
or time-scales. For example, a performer might swoop only at the start of  each phrase or theme, 
or move in different patterns from one phrase to the next. Traditional analysis methods can 
detect simple regularities but may be less successful for irregular or complex patterns (Marwan, 
2008).

Complex patterns that evolve over time may be better captured by recurrence, a measure of  
self-similarity across multiple time-scales (Marwan, 2008). We used recurrence quantification 
analysis (RQA), to examine recurrence across entire performances, one performance at a time. 
In contrast, Teixeira at al. (2014) used instantaneous correlation to measure the similarity of  
selected gestures across performances, two at a time. RQA provides a plot of  the behavior of  a 
system in phase-space, an abstract mathematical representation of  the functioning of  the sys-
tem (Abarbanel, 1995, p. 21). The phase-space of  any (non-linear) complex system can be 
reconstructed from measurement of  the system on a single dimension because each dimension 
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contains information about the other dimensions (Takens, 1981). Thus, instead of  identifying 
movement patterns by visual inspection, we simply asked whether recurrence changed reliably 
across the course of  a musical phrase.

Figure 1 shows examples of  three RQA plots (bottom row) illustrating three simple types of  
movement that might occur during a musical performance, along with the position data from 
which they were generated (top row). The middle column shows a noisy sinewave that might be 
generated by a performer swaying back and forth. The right-hand column shows a noisy square 
wave that might be generated by a performer shifting weight back-and-forth from one leg to the 
other. The left-hand column shows random movement (white noise), providing a baseline 
against which to compare the more orderly data in the other two columns.

The RQA plots (bottom row) represent similarity in position after phase-space reconstruc-
tion. Each dot represents a point of  recurrence where position at one point in time overlapped 
with position at another point in time (in phase-space). Both axes represent elapsed musical 
time from the start of  the performance (in bars). The main diagonal represents a time-lag of  
zero and so the solid line along the diagonal is the tautological consequence of  movements 
overlapping perfectly with themselves at lag–0. Off-diagonal lines indicate similarity at time 
lags that increase with distance from the diagonal. The figures are symmetrical, so lines above 
and below the diagonal are redundant.

Off-diagonal lines are the most informative because they show the temporal structure of  the 
data. Note the difference between the even scattering of  data points in the left panel, like a TV 
with no signal, compared with the bold patterns in the other two panels. Pattern means struc-
ture; even scattering means random movement with no structure. Off-diagonal lines indicate 
the repetition of  similar movements at different time lags. In the center and right-hand panels, 
the spacing between the off-diagonal lines indicates that movements repeated every nine or so 
bars. If  these were real data, we could look at the score to see if  they coincide with the repetition 

Figure 1. Recurrence quantitation plots (bottom row) illustrating three simple types of movement (white 
noise/random, sine-wave, and square-wave) that might occur during a musical performance, along with the 
position data from which they were generated (top row).
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of  musical elements. In the right-hand panel, we see recurrence at two time-scales. In addition 
to diagonal lines every nine or so bars, black squares indicate episodes of  self-similarity on a 
shorter time-scale, lasting approximately three bars, such as when a performer shifts weight 
from one foot to the other.

RQA plots provide a wealth of  information that can be quantified by a variety of  different 
metrics that capture different aspects of  the patterns (Marwan, Romano, Thiel, & Kurths, 
2007). We report the two metrics that provided the clearest relationship to phrasing in our 
data: rate and stability. The rate of  recurrence (aka recurrence) measures the density of  recurrent 
data points as the proportion of  recurrent to non-recurrent data points (0–100%). Recurrence 
indicates repetitiveness and increases when a musician repeats the same notes, sustains a note, 
or remains stationary. Stability of  recurrence (aka mean line) is measured by the mean length of  
the off-diagonal lines, and indicates how long sequences of  recurrent movements persist. In 
Figure 1, stability is lower for the random movements in the left-hand panel than for the more 
orderly movements in the middle and left-hand panels.

After RQA, the reliability of  any apparent relationship between patterns of  movement and 
musical structure must be assessed. This requires that the RQA plots be reduced to a one-dimen-
sional time series for statistical analysis. We collapsed the RQA plots by calculating the rate and 
stability of  recurrence within windows whose size was determined by the musical beats. This 
facilitated the alignment of  RQA metrics (recurrence and stability) with the musical score. The 
final step was to look for systematic relationships between each metric and the musical phrases 
using inferential statistics. In summary, the multi-stage process is as follows: 1) phase-space 
reconstruction, 2) recurrence quantification analysis (RQA), 3) extraction of  windowed time 
series, and 4) statistical analysis by mixed modeling.

Analysis of continuous data

Regardless of  the measure chosen, traditional inferential statistics are not well suited to the 
analysis of  music performance data. Music performance typically involves multi-level temporal 
hierarchies that violate the assumptions of  traditional tests based on general linear models 
(GLM), such as ANOVA and multiple regression. GLM assumes that variance is homogeneous 
across conditions and that observations are independent, assumptions not usually met by 
music performance. Variance may not be constant because phrases, sections, and pieces con-
tain different musical material with consequent differences in variability. Observations are not 
independent because each beat is related to the next and so on up the temporal hierarchy (beats 
within bars, within phrases, within sections, within pieces). In addition, GLM is restricted to a 
single level of  temporal grouping, limiting examination of  the multi-level temporal hierarchies 
present in music to one level at a time (e.g., Mishra, 2010).

The gestural approach deals with the first two of  these problems by arbitrarily segmenting 
continuous movements into discrete, isolated units, which probably goes some way towards 
meeting the requirements of  GLM. Mostly, researchers have avoided use of  inferential statistics, 
relying instead on description, both qualitative and quantitative, of  compelling examples 
(Davidson, 2009). For example, Teixeira et al. (2014) empirically identified similarity in move-
ments using instantaneous correlation of  musicians’ “overall motion” profiles created though 
data reduction methods (i.e., principle components analysis [PCA] of  3-dimensional position 
data from reflective markers). The authors used inferential statistics (t-tests) to show that the 
duration and velocity of  these gestures were lower than normal when playing with a metro-
nome, consistent with previous studies of  the relationship between movement and performance 
style (Davidson & Broughton, 2016). The “strong evidence of  the musical significance of  the 
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musician’s physical movements” was purely descriptive. The authors assert that the gestures 
described were at locations “where there is more room for expressiveness, due to the greater 
rhythmic and melodic variation and also to the conclusion of  the musical phrase” (Teixeira 
et  al., 2014, p. 9). However, despite the sophisticated statistics, there was no assessment of  
whether the correspondence between movement and music was due to chance.

In the only study to report a traditional inferential test of  the relationship between move-
ment and musical structure, MacRitchie et al. (2013) used ANOVA to evaluate effects of  phras-
ing on the overall movement profiles (PCA of  motion capture of  the body) of  nine pianists 
performing two Chopin preludes. The motion profiles had wavelike shapes that appeared from 
visual inspection to correspond with the phrasing reported by the pianists. To show that the 
correspondence was not due to chance, the researchers measured the distance from the wave 
maximum in each phrase to the following phrase boundary and compared across performers 
and phrases (sequentially numbered) in a two-way ANOVA. (The data for the second half  of  
one piece were excluded because the pianists did not agree on the phrasing.) A significant effect 
for pianists indicated the presence of  consistent differences between pianists in where maxima 
were located in a phrase, earlier for some pianists, later for others. The absence of  a comparable 
effect for phrases suggested that maxima were consistently located at the same point in each 
phrase, across the different phrases. The authors conclude that “the motion profiles contained 
repeated periodic patterns for all performers conforming to the underlying phrasing structure 
for both pieces” (p. 102). Additional support for this conclusion came from lagged autocorre-
lation functions with peaks at intervals that appeared, from visual inspection, to correspond 
with phrase boundaries. Despite the ingenious methodology, this visual inspection provides the 
best evidence of  a relationship between movement and phrasing. The null effect of  phrasing in 
the ANOVA demonstrates an absence of  difference, not the presence of  a reliable relationship, 
even if  the use of  ANOVA was warranted, which is doubtful.

Palmer et al. (2009) used functional ANOVA, a non-traditional inferential test, to compare 
the height of  the clarinet bell across the course of  three phrases as eight clarinetists played the 
first eight measures of  Mozart’s Clarinet Concerto in each of  three expressive styles: normal, 
exaggerated, and inexpressive. Functional ANOVA is a form of  functional data analysis that 
compares different times series by using b-splines to smooth the data (Ramsay, 2006). The clari-
net bell rose across the course of  a phrase and the analyses showed that the change increased 
with the expressiveness of  the performance. The authors conclude that movement of  the clari-
net bell was systematically related to phrasing. However, as evidence of  a general relationship 
between movement and phrasing, the data are weak. First, the musical material is limited – 
three phrases, two of  which ended with a beat of  rest. Second, inspection of  the graph pre-
sented suggests that the clarinet bell rose in the first two phrases, but not in the third. Third, the 
analysis requires the dubious assumption that phrasing remained constant across musicians 
and conditions. This was not the case in MacRitchie et al.’s (2013) study and there is reason to 
think that some variation in phrasing is a normal feature of  most performance (Cook, 2013, 
pp. 182–208). In our study, rather than assuming that phrasing would remain constant across 
performances, we asked the musicians to report the phrasing that they had used immediately 
after each performance.

Fortunately, recent developments in (short/longitudinal) time-series analysis provide a solu-
tion to most of  these problems of  statistical inference. Mixed-effects models provide a generalized 
form of  multiple regression analysis capable of  taking into account the correlated nature of  
performance data as well as the complex crossing and nesting of  temporal hierarchies that rou-
tinely occur in music performance as well as the unbalanced number of  observations per phrase, 
section, or piece typical of  music (Pinheiro & Bates, 2000; Singer & Willett, 2003). Mixed models 
allow examination of  grouping effects at multiple levels of  a musical hierarchy, the interleaving 
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of  temporally nested and crossed factors of  the sort that occurs when a musician gives multiple 
performances of  the same piece, and differences between musicians and performances in how 
the music is divided up. This makes it possible to accurately partition variance in the data between 
various sources (musicians, musical pieces, performances, and levels of  musical structure), the 
better to pinpoint effects of  interest, such as phrasing. Mixed models allow testing of  “growth 
curve” serial position effects, such as U-shaped or S-shaped changes across the length of  a phrase 
(Mirman, 2014). Finally, mixed models allow the researcher to treat each independent variable 
as fixed, random or both, making it possible to increase sensitivity by statistically holding con-
stant variables of  less interest (e.g., different lengths of  phrase or musical locations). We used 
mixed-effects models with dependent variables from RQA analysis.

Our study

In summary, we measured the side-to-side (ML) sway of  two trombonists as they each  
performed two solo pieces, twice, in each of  three performance styles (normal, expressive, and non-
expressive), for a total of  24 performances, and used mixed models to look for effects of  phrasing 
and performance style. We examined the linear, quadratic (U-shaped) and cubic (S-shaped) 
components of  serial position in a phrase, which we refer to as components of  phrasing. If  move-
ment is unrelated to phrasing, all three components will be non-significant, indicating that the 
phrasing contour is flat. Effects of  any component would indicate that movement and phrasing 
were systematically related across the various phrases, performances, musicians, and pieces. If  
we find effects of  serial position for rate of  recurrence, it will mean that the repetitiveness of  
movement changes systematically across a phrase. Similarly, if  we find effects for stability of  
recurrence it will mean that the duration of  episodes of  repetitiveness changes systematically 
across a phrase. We were also interested to see whether effects of  phrasing on movement would 
depend on performance style.

Method

Musicians and music

The musicians were two male professional tenor trombone players, each with over 25 years of  
experience, both of  whom perform regularly and teach on multiple brass instruments. Both 
musicians were familiar with the two pieces selected for the study, having taught them to 
students.

We selected two standards of  the trombone literature by Marco Bordogni (1789–1856), 
transcribed by Joannes Rochut (Rochut, 1928), that differed in musical structure but were of  
similar length and difficulty, with similar distributions of  intervals (Cronbach’s α = .932). The 
more structured piece, Rochut No. 4, follows a standard ABA form, with a nested question-and-
answer structure within each section, and contains 154 beats and 238 notes in F major with a 
3/4 meter. The less structured piece, Rochut No. 13, is structured as a short fantasy or impromptu, 
without the larger scale harmonic/melodic structure of  a rounded binary or ternary format. It 
is comprised of  four, short thematic sections, and contains 170 beats and 245 notes in E-flat 
major with a 3/8 meter.

Apparatus

Body movements. We measured postural sway as changes in center of pressure (COP) measure-
ments using a Wii Nintendo Balance Board (Nintendo, Kyoto, Japan). COP reflects movements 
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of head and arms, in addition to the trunk. The Wii Balance Board provides reliable, low cost 
measurements of COP at 34 Hz (Clark et al., 2010). While lower than in most other studies (e.g., 
Wanderley et al., 2005), the sampling frequency was more than adequate to capture the fre-
quency of the great majority of the postural sway which was between .25 and 2 Hz. This means 
we over sampled the data at least 8 times. The Wii Balance Board was connected via Bluetooth 
to a Dell Inspiron E1505 computer with Matlab 2011b. Matlab interfaced with the Wii Balance 
Board using WiiLab Toolbox (Ahmed, 2012). Data were collected using the Matlab Psychophys-
ics Toolbox version 3.0 (Brainard, 1997; Kleiner et al., 2007). Data were linearly interpolated to 
34 Hz to correct for timing variances and low-pass filtered (Butterworth filter) at 16 Hz. COP was 
measured in centimeters for medio-lateral sway (ML), i.e., left-to-right. The alignment between 
the sound recordings and movements were established with the Psychophysics tool box. The 
location of each note in each performance was located initially by listening, and then more pre-
cisely by finding the local minima in the acoustic wave of each performance to determine onset 
and offset times. This process was repeated twice to increase the reliability of note location. The 
note locations were used to establish the locations of the beats.

Sound. The performances were recorded simultaneously with the postural data using a Shure 
microphone and external USB sound mixer (M-Audio) connected to Matlab running the Psy-
chophysics Toolbox. The microphone was placed on a stand approximately 4 feet above the 
ground, 4 feet from the performer, and 1 foot left of  center. The locations of  the microphone and 
the balance board remained constant across performances.

Procedure

We told the musicians that their body movements would be recorded and asked them to stand 
on the Wii Board without moving their feet, but to otherwise move their bodies in any way they 
needed. We asked them to prepare the two pieces so that they would be able to perform them 
fluently from the score when they came to the lab.

The musicians came to the lab separately. Each musician came twice, on two different days, 
playing only one of  the two pieces during each visit. They played the piece selected for the visit 
six times, twice in each of  three expressive styles (normal, expressive, and non-expressive), with 
the two performances in each style blocked, i.e., back-to-back. For the normal style, they were 
asked to play in a way that they considered natural. For the expressive style, they were asked to 
play with exaggerated expression. Both performers understood this as a direction to exaggerate 
both dynamics and tempo. For the non-expressive style, they were asked to play with minimal 
variation in tempo and dynamics, “like a MIDI performance”. Normal performances were 
always first, to allow the performers to establish a baseline for the other, atypical performance 
styles. The order of  expressive and non-expressive style performances was counterbalanced 
across pieces and performers.

The musicians were told that they would be asked to report their phrasing by marking it on 
a copy of  the score at the end of  each performance. A clean copy of  the score was used for each 
report. The musicians were told that we were measuring their movements, but they were not 
told specifically that their movements would be related to their reports of  phrasing. The analy-
sis of  musical structure was provided by the third author, who was one of  the musicians and 
has an MA degree in trombone performance. Two independent music researchers with 
advanced degrees in music were also asked to mark the locations of  the boundaries of  the 
musical structure. For Rochut 4, their markings locations agreed with the musical structure 
reported by the musician, 100% and 91.67%, collapsing over the upper and lower level 
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boundaries, respectively for each rater. For Rochut 13, the location of  musical boundaries 
reported by the third author agreed with those of  the two independent judges for 100% of  the 
top level boundaries and 76.92% and 55.55% of  the middle and lower level boundaries respec-
tively. Given the impromptu-like nature of  Rochut 13, it is not surprising that musicians differ 
with respect to the lower level boundaries. The four main melodic sections are so short that 
further fractionation into sub-phrases is somewhat arbitrary.

Analysis

Step 1: Phase-space reconstruction. Parameters were determined successively for each step of 
phase-space reconstruction (parameters: time-lag and embedding dimension) followed by RQA 
(parameter: radius size) (see Abarbanel (1995) and Shockley and Riley (2015) for RQA param-
eter selection). For phase-space reconstruction, we selected the median lag (42 lags/1.23 sec-
onds) across the 24 performances, using the average mutual information index to identify the 
first local minimum in each performance, i.e., where the time series was least self-similar. This 
method makes the extracted components nearly orthogonal. Next, we used false neighbor’s 
analysis to determine the number of embedding dimensions, unfolding the time series into suc-
cessively higher dimensions until the data points did not overlap spuriously. Finally, we per-
formed the phase-space reconstruction using the median (and mode) number of dimensions  
(N = 4) across the 24 performances.

Step 2: Recurrence quantification analysis (RQA). RQA requires the investigator to select a radius 
window that determines the distance between data points counted as “near”, i.e., recurrent. 
We used the maximum norm radius and we empirically determined a radius size that ensured 
that the majority of  the performances were near 10% recurrent (Marwan et. al., 2007).

Step 3: Extract time series. We reduced the RQA data for each performance to a one-dimensional 
time series at the level of  musical beats, using Soundforge 9.0 to measure the elapsed time from 
the beginning of  the performance to the local minimum in the acoustic wave corresponding to 
the onset of  each note that fell on the beat. Finally, we computed the rate and stability (mean 
line) of  recurrence of  ML sway for each beat.

Step 4: Mixed models. The phrasing reported by the musicians for each performance was coded 
continuously for each phrase as the phrase length, measured by the number of  beats in the 
phrase expressed as a Z-score, and for each beat as serial position from the start of  the phrase, 
expressed as the percentage of  the phrase completed. We refer to phrase length and serial posi-
tion together as “phrasing” and to effects of  serial position on the dependent measures as 
“phrasing contours”.

We used mixed models to examine the effects of  phrasing on each dependent measure 
(Singer & Willett, 2003), using the LME4 package in R (Bates, Maechler, Bolker, & Walker, 
2015) following the procedures of  Barr, Levy, Scheppers, and Tily (2013). Each model was con-
structed in an identical manner using the same random effects: serial position (linear quad-
ratic, and cubic), phrase length, performance style, musician, and performance (1st or 2nd). 
Serial position in a phrase was entered into the models using orthogonal polynomials (Mirman, 
Dixon, & Magnuson, 2008). In order to interpret the effects for the polynomials, we generated 
graphs from the models.

We performed separate analyses for each metric of  postural sway (recurrence and stability). 
For each analysis, we examined two models, using a forward modeling procedure. The first 
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model examined the effects of  serial position, performance style, and phrase length treating 
them as fixed effects (predictors). The second model added the interactions of  phrase length 
with the other predictors. The random effects in both models were the same as the fixed effects 
together with musician, piece, and trial, which were included only as random effects. Model fit 
was assessed by deviance testing.

We included phrase length, rather than musical piece, as a predictor because preliminary 
analyses showed that phrase length accounted for differences between the two pieces. We 
examined the effects of  normal and expressive performances styles by comparing each style, 
separately, to a baseline provided by the non-expressive performances. Values above and below 
the non-expressive baseline were indicated by positive and negative effects respectively. In mod-
eling stability (mean line), we partialed out recurrence (using linear regression), in order to be 
able to draw conclusions about stability that were independent of  amount of  recurrence. (Note: 
the mean of  the mean line values was added back into the stability values shown in Table 3 and 
Figure 5.)

Results

Phrasing

Figure 2 shows an excerpt of  each of  the pieces with the phrase markings (shown as slurs) for 
each musician the first time they performed each piece in the normal style. As can be seen in 
this excerpt, Musician 1 used shorter phrases than Musician 2.

Table 1 shows the number of  phrases into which the musicians divided the musical score in 
each performance. The most striking feature of  the data is the wide range of  variation, both 
within and between musicians and between pieces. Phrasing was mostly consistent for the two 
performances of  the same piece in the same style by the same musician but varied widely across 
musicians and performance styles. The only reliable difference was between musicians for the 
more structured piece, for which Musician 1 reported more phrases than Musician 2, t(10) = 
3.79, p < .05.

Phrasing was based on the musical structure. Table 2 shows that most phrases started at a 
structural boundary and that the two musicians differed in their use of  the musical structure. 
Musician 2 (who provided the report of  the musical structure) started phrases at musical 
boundaries more often than Musician 1 for both pieces, t(10) = 2.43, p < .05 and t(10) = 2.75, 
p < .05, for the more and less structured pieces respectively.

We examined the percentage of  boundaries marked as the start of  a phrase at each level of  
musical structure. For the more structured piece, the musicians placed phrase boundaries that 
coincided with an average of  96.67%, 95.83%, and 63.33% of  the top, middle, and bottom level 
boundaries, respectively across all performances and styles. For the less structured piece, the 
musicians placed phrase boundaries that coincided with an average of  100% and 60.83% of  top 
and bottom levels boundaries, respectively. In summary, both musicians based their phrasing on 
the musical structure, but differed in their use of  lower-level musical boundaries. Anticipating 
the possibility of  such variation, we asked them to report their phrasing after each performance 
and used their reports in examining the relationship between phrasing and movement.

Postural sway

Recurrence quantification of postural sway

Figure 3 shows the postural sway of  one of  the musicians for three performances of  the same 
piece, one in each expressive style. The figures illustrate characteristic patterns present in many 
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of  the 24 performances. The top row shows position across the entire performance. Recurrence 
plots for these data are shown for the entire piece in the middle row and for the first nine bars in 
the bottom row. Each column shows a different expressive style.

The most important feature of  Figure 3 is the presence of  patterns in the recurrence plots. 
The irregular diagonal lines for the normal performance (center) signify short periods of  
smooth oscillation, as in the center RQA plot in Figure 1. The irregular horizontal lines for the 
expressive performance (right) signify short periods, at varying time intervals, during which 
the same position recurred. For both styles, there are also square box-shapes along the diago-
nal, as in the right-hand plot in Figure 1, indicating that the performer maintained the same 
position for periods of  up to one bar. Of  the three performance styles, the non-expressive perfor-
mance most resembles the white noise in the left-hand plot in Figure 1. The non-expressive plot 

Figure 2. Excerpts from Rochut No. 4 and No. 13 with phrase markings for each musician indicated as 
slurs for the first performance in the normal style.

Table 1. Number of phrases reported by two musicians in two normal, expressive, and non-expressive 
performances of two pieces.

Piece Musician Performance style & Performance

 Normal Expressive Non-expressive

1st 2nd 1st 2nd 1st 2nd

More-structured 1 12 13 17 16 23 24
2 8 8 14 5 8 8

Less-structured 1 12 12 19 18 9 9
2 12 12 9 9 9 9

Table 2. Percentage of phrases coinciding with a boundary in the musical form by two musicians in two 
normal, expressive, and non-expressive performances of two pieces.

Piece Musician Performance style & Performance

 Normal Expressive Non-expressive

1st 2nd 1st 2nd 1st 2nd

More-
structured

1 100.00 92.31 70.59 75.00 47.83 50.00
2 100.00 100.00 78.57 100.00 100.00 100.00

Less-
structured

1 83.33 83.33 55.56 58.82 88.89 88.89
2 100.00 100.00 100.00 77.78 100.00 100.00
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also appears darker than the normal and expressive plots, indicating the presence of  more 
recurrent data points. The source of  these differences is evident in the top row of  Figure 3, 
where the plots of  position show that movements in the non-expressive performance were 
shorter and more sudden, while those in the normal performance were longer and more con-
tinuous, with the expressive performance midway between.

The recurrence quantification plots in Figure 3 were then windowed into beats and means 
extracted within each window (without any overlap), separately for recurrence rate and stabil-
ity. Figure 4 shows the results of  this windowing for the three performances shown in Figure 3. 
These unidimensional vectors were then analyzed using mixed-effects modeling.

Modeling recurrence and stability

Table 3 shows the results of  the mixed-effects modeling of  each metric of  postural sway (recur-
rence and stability). The first model examined the effects of  serial position, performance style, 
and phrase length, and the second model added the interactions with phrase length. The 

Figure 3. Postural sway of the same musician performing the same piece in three expressive styles for 
the more structured piece, showing position (top row), the full recurrence quantification of the whole 
performance (middle row), and a magnified view of the first 9 bars extracted from the whole performance 
(bottom row).
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addition of  the interactions with phrase length in Model 2 significantly improved the fit of  the 
model for both rate and stability due to the presence of  three-way interactions indicating that 
the effects of  phrasing differed with the performance style and length of  phrase. Therefore, we 
limit our description of  the results to Model 2 for each metric, describing effects in order of  their 
appearance in Table 3. Model 2 includes only simple effects, not main effects, because perfor-
mance style was involved in every effect and was dummy coded. In both models, the effects of  
performance style were evaluated by comparing normal and expressive with non-expressive 
performances. As a reminder, we have italicized “Non-Expressive” when labeling this simple 
effect in Table 3.

To aid understanding of  Model 2, Figure 5 displays the model fitted data generated by the 
model (fixed and random effects). The figure is based on data from all the phrases, in both 
pieces, for all performances, by both musicians. Serial position effects (and their interactions) 
from Table 3 are represented by the phrase contours shown in the figure, which show how 
movement changed across the course of  a phrase. The two-way interactions between serial 
position (continuous) and style (categorical) are best seen in the middle panels of  Figure 5 (all 
phrases). The three-way interactions are shown in the left and right panels which were created 
by dichotomizing phrase length, a continuous measure. Short phrases (13 or fewer beats [80% 
of  phrases]) are shown in the left-hand panel of  Figure 5, long phrases (14 or more beats) in 
the right-hand panel.

Performance style. Sway was significantly more recurrent and less stable in non-expressive per-
formances than in normal and expressive performances. This is indicated by the significant 
effects for both performance styles which were negative for recurrence (-5.11 and -6.46 
respectively) and positive for stability (0.92 and 1.39 respectively). We have already noted 
these effects in the RQA plots in Figure 3, in which the plot for the non-expressive performance 
appears darker and the data points more evenly scattered, indicating that the non-expressive 
performance was more recurrent and less stable. The significant effects of  performance style 
in Table 3 indicate that this was not an isolated case; similar differences occurred throughout 
the data, more frequently than expected by chance. Thus, there was less self-similarity in nor-
mal and expressive performances than non-expressive performances, but when self-similarity 
did occur it was more stable (lasted longer) in normal and expressive than in non-expressive 
performances.

Figure 4. The recurrence rate and stability extracted from the data featured in Figure 3 of the same 
musician performing the more structured piece in three expressive styles.
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Phrase length by style. Stability increased with length of  phrase and this effect was significantly 
larger in non-expressive than in normal and expressive performances. This is indicated by the 
significant positive effect of  phrase length for non-expressive performances (1.01) and the sig-
nificant negative interactions of  phrase length for the normal and expressive performances 
(-1.14 and -1.38 respectively). For rate of  recurrence, the interaction of  phrase length and style 
was not significant. Thus, the length of  periods of  self-similar movement increased with phrase 
length in non-expressive performances, but not in normal and expressive performances.

Serial position by style. Phrasing contours were significantly curved for both recurrence and 
stability; the contours differed with the performance style for recurrence but not for stability. 
The differences between performance styles are best seen in the green short-dashed lines  
in Figure 5, representing all phrases. For recurrence, the contours were S-shaped for non-
expressive and normal performances and arched for expressive performances. This is reflected 
in Model 2 by significant cubic effects for non-expressive and normal performances and a sig-
nificant quadratic effect for expressive performances. The cubic effects for non-expressive and 
normal performances were in opposite directions, reflecting differences in the location of  the 
peaks. There were also significant linear effects, positive for normal and expressive perfor-
mances and negative for non-expressive performances, indicating that recurrence increased 
across most of  the phrase for the former and decreased for the latter. Thus, the amount of  self-
similarity in the trombonists’ postural sway changed across the course of  a phrase and the 
pattern of  change differed with the style of  the performance.

Figure 5. Rate and stability of recurrence of postural sway over serial position: phrasing contours for 
short, long, and for all (short + long) phrases, separately for non-expressive (Non-Exp), normal, and 
expressive (Exp) performances.
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For stability, the phrasing contour was S-shaped for non-expressive performances, while the 
smaller fluctuations for normal and expressive performances did not differ from chance. This is 
indicated in Model 2 by the significant cubic effect for non-expressive performances and the 
absence of  significant effects for normal and expressive performances. Thus, the duration of  
episodes of  self-similarity peaked in the second half  of  a phrase in non-expressive performances, 
and remained constant across a phrase for performances in other styles.

Table 3. Forward fitted mixed-effects models of serial position, performance style, and phrase length, 
separately for recurrence and stability.

Fixed effects Recurrence  
Model 1

Recurrence  
Model 2

Stability  
Model 1

Stability  
Model 2

Estimate SE Estimate SE Estimate SE Estimate SE

Style
Intercept value
Non-Expressive 
(Non-Exp)

34.31*** (2.21) 33.60*** (2.53) 6.21*** (0.54) 6.63*** (0.56)

Normal (Norm) −5.73*** (1.41) −5.11** (1.96) 1.35*** (0.17) 0.92*** (0.23)
Expressive (Exp) −7.51*** (1.58) −6.46** (2.21) 1.92*** (0.19) 1.39*** (0.25)
Phrase Length (PL) by Style
PL: Non-Exp 0.64 (1.06) −1.15 (3.43) –0.10 (0.07) 1.01* (0.40)
PL: Normal 1.66 (3.54) −1.14** (0.41)
PL: Exp 2.82 (3.82) −1.38** (0.45)
Serial Position (SP) by Style
SP: Non-Exp −43.42 (25.37) −70.48* (29.81) 4.54 (2.61) 3.07 (3.11)
SP2: Non-Exp −13.61 (22.73) 6.32 (27.99) –2.49 (2.51) −6.07 (3.10)
SP3: Non-Exp 43.84* (19.06) 72.89** (22.45) –5.75** (2.20) −6.97** (2.68)
SP: Norm 81.48*** (23.54) 97.26*** (26.25) –6.13 (3.20) −4.60 (3.53)
SP2: Norm −26.41 (23.53) −44.96 (26.40) 2.57 (3.21) 6.00 (3.55)
SP3: Norm −121.85*** (23.10) −145.4*** (25.75) 4.17 (3.14) 4.87 (3.50)
SP: Exp 76.81** (24.15) 121.49*** (28.09) 0.20 (3.23) −1.57 (3.67)
SP2: Exp −44.68 (23.87) −66.99* (28.28) 1.08 (3.20) 5.01 (3.68)
SP3: Exp −47.96* (23.12) −41.76 (26.41) –1.43 (3.11) −0.38 (3.51)
Serial Position by Style by Phrase Length
SP: Non-Exp: PL −101.00 (52.30) −1.56 (6.29)
SP2: Non-Exp: PL 72.94 (50.21) −14.03* (6.11)
SP3: Non-Exp: PL 101.70* (43.58) −4.88 (5.50)
SP: Norm: PL 61.64 (48.40) −1.58 (6.20)
SP2: Norm: PL −93.93* (47.26) 16.31** (6.08)
SP3: Norm: PL −84.76 (43.78) 8.27 (5.78)
SP: Exp: PL 156.92** (56.05) −13.93* (6.97)
SP2: Exp: PL −88.62 (54.63) 16.26* (6.81)
SP3: Exp: PL 18.04 (48.47) 9.39 (6.17)
Goodness of fit
Deviance 26758.88 26716.78 12396.52 12348.62  
AIC 26830.87 26810.78 12468.53 12442.62  
BIC 27053.06 27100.86 12690.71 12732.69  
X2 (df) – (36) 42.09*** (47) – (36) 47.91*** (47)

* p < .05, ** p < .01, *** p < .001.
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Serial position by style by phrase length. Phrasing contours also varied with length of  phrase,  
creating three-way interactions represented by the red solid and blue long-dashed lines in 
Figure 5. Recurrence and stability were affected in different ways. For recurrence, phrasing 
contours were more S-shaped in long phrases for non-expressive performances and more 
U-shaped in the first half  of  the phrase for normal performances. For expressive performances, 
the contour sloped upward over the course of  long phrases and downward over the course of  
short phrases. These differences between the three styles are reflected in the direction and size 
of  each of  the components of  phrasing and, to a lesser extent, in which component was sig-
nificant. Thus, the amount of  self-similarity changed across a phrase in complex ways that 
depended on the performance style and length of  phrase. Phrasing contours were more pro-
nounced in long phrases for non-expressive and expressive performances. For normal perfor-
mances, the effects of  phrase length were in the opposite direction and smaller.

For stability, the contours again varied with style and phrase length, but were more similar 
than for rate of  recurrence. For non-expressive and expressive performances, there were arch-
shaped contours that peaked in the second half  of  the phrase. These arches were more pro-
nounced in long phrases for non-expressive performances and in short phrases for expressive 
performances. In normal performances, the contours were flatter and peaked in the first half  of  
long phrases and in the second half  of  short phrases. Again, the differences are reflected in the 
direction and size of  each of  the components of  phrasing and, to a lesser extent, in which com-
ponent was significant. Thus, as for rate of  recurrence, phrasing contours for stability of  recur-
rence depended on the performance style and length of  phrase and were more pronounced in 
long phrases and more pronounced for non-expressive and expressive performances than for 
normal performances.

Discussion

The musicians’ sway changed systematically across the course of  a phrase in complex but 
orderly ways, confirming the widely-held view that musicians’ movements reflect the music 
that they are playing (Davidson & Broughton, 2016; Ginsborg, 2009; MacRitchie et al, 2013; 
Nusseck & Wanderley, 2009; Palmer et al., 2009). Also, playing with more or less expression 
affected the way the musicians moved, as in previous studies (Davidson, 1994; Teixeira et al., 
2014). Unlike previous studies, we avoided making assumptions about the size and types of  
movement of  interest. Instead, we asked whether phrasing had consistent effects on patterns of  
movement across entire performances. Phrasing did have consistent effects. However, the two 
musicians used different phrasing (for one piece), and effects of  phrasing changed with perfor-
mance style and length of  phrase. This complexity explains the difficulty that researchers have 
had identifying consistent relationships between movement and music (Davidson, 2007; 
Wanderley et al., 2005).

Our most important finding is that the relationship of  phrasing and movement was statisti-
cally reliable. Our methods differed in three ways from previous studies that identified relation-
ships between movement and phrasing but did not evaluate the possibility that they were due 
to chance (Davidson, 2009; MacRitchie et al., 2013; Palmer et al., 2009; Teixeira et al. 2014; 
Wanderley, 2002; Wanderley et al., 2005). First, we examined recurrence. Second, we asked 
the musicians to report their phrasing for each performance and used their reports to examine 
their movements. Third, we used mixed models to assess the reliability of  the recurrence met-
rics. We discuss each point in turn.

First, recurrence quantification analysis (RQA) provided an effective method of  quantifying 
the patterning of  body movement during performance. Instead of  asking whether musicians 
moved up or down, or more or less, across the course of  a phrase, we asked whether they made 
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the kinds of  complex movement gestures identified in previous research (Davidson, 2002, 
2007, 2012; Wanderley et al., 2005). Recurrence is a more abstract metric than raw position 
or velocity of  body sway, and provides a more global measure of  the patterning of  movement. 
Further studies are required to better understand how recurrence can be used to examine the 
relationship between music and movement. We used only two of  the many possible metrics of  
recurrence; others may be useful for other instruments, pieces, and performance contexts 
(Marwan et al., 2007). We measured postural sway, as have others (see Shockley & Riley, 2015); 
other types of  movement and other body parts can also be analyzed this way.

Second, asking the musicians to report phrasing after each performance was important 
because each musician used different phrasing, suggesting that the musical structure and the 
phrasing the musician can adopt can vary for each performance (Cook, 2013, pp. 182–208). 
While there was high agreement on musical structure between the performer and independent 
raters for one of  the pieces, agreement for the other was lower (between 56% and 77%). Our 
anticipation of  this kind of  ambiguity is the reason that we relied on each performer’s account 
of  their own phrasing. If  we had not done so, the extent of  the differences between the two 
musicians makes it unlikely that we would have found a systematic relationship between move-
ment and phrasing. While overall structure is important for a musician’s understanding and 
interpretation of  a piece, the differences in phrasing reported by the musicians for each perfor-
mance style suggest that musical expression affects phrasing and that changing the expression 
can alter the choice of  phrasing.

Third, mixed models allowed us to respect the performers’ reporting of  the varied number of  
phrases and phrase lengths in the two pieces and to test simultaneously for linear, quadratic 
and cubic components of  phrasing on the recurrence metrics. This allowed us to assess the reli-
ability of  effects across entire performances, while respecting the temporal structure of  the data 
and avoiding the need to single out particular passages or to treat phrases in isolation from their 
neighbors.

The effects of  performance style on the musicians’ movements were broadly consistent with 
previous reports that musicians’ movements change with their style of  playing (Davidson, 
1994; Teixeira et  al., 2014; Wanderley et  al., 2005). Movement was less organized in non-
expressive performances than in normal and expressive performances. Paradoxically, move-
ments in the non-expressive performances were more strongly related to phrasing. Phrasing 
contours were more exaggerated and effects of  phrase length larger in the non-expressive than 
in normal and expressive performances. One possible resolution of  the paradox is suggested by 
the musicians’ report that playing non-expressively was difficult. We speculate that playing in 
an atypical, unpracticed style disrupts familiar movement patterns, resulting in less organized 
movements.

In summary, the trombonists’ swaying movements delineated the musical phrases they were 
playing. It is intuitively obvious to even a casual observer that movement and music are inti-
mately related. However, it has been difficult to provide evidence of  this relationship that meets 
standards of  scientific rigor. The complex interactions that we found help to explain why. Until 
recently, psychology relied primarily on statistical procedures not well suited to this kind of  
complexity or to the continuous measurements needed for music performance. By using a com-
bination of  techniques, we were able to show that the belief  that movement and music are 
closely related is well founded. The conclusions of  our science now match those of  our senses.
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